Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
PLoS One ; 18(4): e0285203, 2023.
Article in English | MEDLINE | ID: covidwho-2305284

ABSTRACT

BACKGROUND: In May 2022, the monkeypox virus (MPXV) spread into non-endemic countries and the global community was quick to test the lessons learned from the SARS-CoV-2 pandemic. Due to its symptomatic resemblance to other diseases, like the non-pox virus varicella zoster (chickenpox), polymerase chain reaction methods play an important role in correctly diagnosing the rash-causing pathogen. INSTAND quickly established a new external quality assessment (EQA) scheme for MPXV and orthopoxvirus (OPXV) DNA detection to assess the current performance quality of the laboratory tests. METHODS: We analyzed quantitative and qualitative data of the first German EQA for MPXV and OPXV DNA detection. The survey included one negative and three MPXV-positive samples with different MPX viral loads. The threshold cycle (Ct) or other measures defining the quantification cycle (Cq) were analyzed in an assay-specific manner. A Passing Bablok fit was used to investigate the performance at laboratory level. RESULTS: 141 qualitative datasets were reported by 131 laboratories for MPXV detection and 68 qualitative datasets by 65 laboratories for OPXV detection. More than 96% of the results were correctly identified as negative and more than 97% correctly identified as positive. An analysis of the reported Ct/Cq values showed a large spread of these values of up to 12 Ct/Cq. Nevertheless, there is a good correlation of results for the different MPXV concentrations at laboratory level. Only a few quantitative results in copies/mL were reported (MPXV: N = 5; OPXV: N = 2), but the results correlated well with the concentration differences between the EQA samples, which were to a power of ten each. CONCLUSION: The EQA results show that laboratories performed well in detecting both MPXV and OPXV. However, Ct/Cq values should be interpreted with caution when conclusions are drawn about the viral load as long as metrological traceability is not granted.


Subject(s)
COVID-19 , Monkeypox , Orthopoxvirus , Humans , Monkeypox virus/genetics , SARS-CoV-2/genetics
2.
Int J Infect Dis ; 128: 166-175, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2232009

ABSTRACT

OBJECTIVES: Regarding reactogenicity and immunogenicity, heterologous COVID-19 vaccination regimens are considered as an alternative to conventional immunization schemes. METHODS: Individuals receiving either heterologous (ChAdOx1-S [AstraZeneca, Cambridge, UK]/BNT162b2 [Pfizer-BioNTech, Mainz, Germany]; n = 306) or homologous (messenger RNA [mRNA]-1273 [Moderna, Cambridge, Massachusetts, USA]; n = 139) vaccination were asked to participate when receiving their second dose. Reactogenicity was assessed after 1 month, immunogenicity after 1, 3, and/or 6 months, including a third dose, through SARS-CoV-2 antispike immunoglobulin G, surrogate virus neutralization test, and a plaque reduction neutralization test against the Delta (B.1.167.2) and Omicron (B.1.1.529; BA.1) variants of concern. RESULTS: The overall reactogenicity was lower after heterologous vaccination. In both cohorts, SARS-CoV-2 antispike immunoglobulin G concentrations waned over time with the heterologous vaccination demonstrating higher neutralizing activity than homologous mRNA vaccination after 3 months to low neutralizing levels in the Delta plaque reduction neutralization test after 6 months. At this point, 3.2% of the heterologous and 11.4% of the homologous cohort yielded low neutralizing activity against Omicron. After a third dose of an mRNA vaccine, ≥99% of vaccinees demonstrated positive neutralizing activity against Delta. Depending on the vaccination scheme and against Omicron, 60% to 87.5% of vaccinees demonstrated positive neutralizing activity. CONCLUSION: ChAdOx1-S/BNT162b2 vaccination demonstrated an acceptable reactogenicity and immunogenicity profile. A third dose of an mRNA vaccine is necessary to maintain neutralizing activity against SARS-CoV-2. However, variants of concern-adapted versions of the vaccines would be desirable.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19 Vaccines , Prospective Studies , SARS-CoV-2 , Vaccination , Immunization , ChAdOx1 nCoV-19 , RNA, Messenger , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
3.
J Nat Prod ; 86(2): 264-275, 2023 02 24.
Article in English | MEDLINE | ID: covidwho-2185476

ABSTRACT

In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 µM, and four of them with high potency (IC50 < 10 µM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 µM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.


Subject(s)
Biological Products , COVID-19 , Humans , Viral Proteases , SARS-CoV-2 , Peptide Hydrolases , Antiviral Agents , Molecular Docking Simulation , Protease Inhibitors
4.
iScience ; 26(2): 105944, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2165435

ABSTRACT

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.

8.
Transplantation direct ; 8(11), 2022.
Article in English | EuropePMC | ID: covidwho-2073328

ABSTRACT

Background. Kidney transplant recipients are at increased risk of SARS-CoV-2 infection and a more severe course of COVID-19. Methods. We conducted a quantitative serologic testing of antibodies specific for the wild type of SARS-CoV-2 and the Omicron variant of concern before and after a third-dose vaccination, either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) in a cohort of 103 stable kidney transplant recipients (median [range] age, 58 [22–84] y, 57 men [55.3%]). Results. Third-dose vaccination increased the seroconversion rate from 57.3% to 71.8%. However, despite a marked rise of the antibody concentrations after the booster, 55.4% and 11.6% only formed neutralizing antibodies against the SARS-CoV-2 wild type and Omicron, respectively. Treatment with mycophenolic acid/mycophenolate mofetil (in strata of the dose quartiles), advanced age, and‚ above all‚ impaired renal function (eGFR <60 mL/min) adversely influenced the humoral immunity regarding seroconversion and inhibition of the wild type of SARS-CoV-2. Conclusions. Apart from immunosuppressive therapy, the humoral vaccination response is largely affected by nonmodifiable factors in kidney transplant recipients. With the currently leading and clinically easier Omicron variant, this puts into perspective the strategy to significantly enhance the protective efficacy of the available vaccines by reducing or temporarily stopping proliferation inhibitors, not least considering the inherent rejection risk with a possible deterioration of graft function.

9.
Environ Res ; 216(Pt 1): 114417, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2049188

ABSTRACT

BACKGROUND: SARS-CoV-2 is spread primarily through droplets and aerosols. Exhaled aerosols are generated in the upper airways through shear stress and in the lung periphery by 'reopening of collapsed airways'. Aerosol measuring may detect highly contagious individuals ("super spreaders or super-emitters") and discriminate between SARS-CoV-2 infected and non-infected individuals. This is the first study comparing exhaled aerosols in SARS-CoV-2 infected individuals and healthy controls. DESIGN: A prospective observational cohort study in 288 adults, comprising 64 patients testing positive by SARS CoV-2 PCR before enrollment, and 224 healthy adults testing negative (matched control sample) at the University Hospital Frankfurt, Germany, from February to June 2021. Study objective was to evaluate the concentration of exhaled aerosols during physiologic breathing in SARS-CoV-2 PCR-positive and -negative subjects. Secondary outcome measures included correlation of aerosol concentration to SARS-CoV-2 PCR results, change in aerosol concentration due to confounders, and correlation between clinical symptoms and aerosol. RESULTS: There was a highly significant difference in respiratory aerosol concentrations between SARS-CoV-2 PCR-positive (median 1490.5/L) and -negative subjects (median 252.0/L; p < 0.0001). There were no significant differences due to age, sex, smoking status, or body mass index. ROC analysis showed an AUC of 0.8918. CONCLUSIONS: Measurements of respiratory aerosols were significantly elevated in SARS-CoV-2 positive individuals, which helps to understand the spread and course of respiratory viral infections, as well as the detection of highly infectious individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/diagnosis , Prospective Studies , Respiratory Aerosols and Droplets , Polymerase Chain Reaction
10.
Frontiers in pediatrics ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1970492

ABSTRACT

Background Children and adolescents seem to be less affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease in terms of severity, especially until the increasing spread of the omicron variant in December 2021. Anatomical structures and lower number of exhaled aerosols may in part explain this phenomenon. In a cohort of healthy and SARS-CoV-2 infected children, we compared exhaled particle counts to gain further insights about the spreading of SARS-CoV-2. Materials and Methods In this single-center prospective observational trial, a total of 162 children and adolescents (age 6–17 years), of whom 39 were polymerase chain reaction (PCR)-positive for SARS-CoV-2 and 123 PCR-negative, were included. The 39 PCR-positive children were compared to 39 PCR-negative age-matched controls. The data of all PCR-negative children were analyzed to determine baseline exhaled particle counts in children. In addition, medical and clinical history was obtained and spirometry was measured. Results Baseline exhaled particle counts were low in healthy children. Exhaled particle counts were significantly increased in SARS-CoV-2 PCR-positive children (median 355.0/L;range 81–6955/L), compared to age-matched -negative children (median 157.0/L;range 1–533/L;p < 0.001). Conclusion SARS-CoV-2 PCR-positive children exhaled significantly higher levels of aerosols than healthy children. Overall children had low levels of exhaled particle counts, possibly indicating that children are not the major driver of the SARS-CoV-2 pandemic. Trial Registration [ClinicalTrials.gov], Identifier [NCT04739020].

11.
Vaccines (Basel) ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1957463

ABSTRACT

The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs.

12.
Methods Mol Biol ; 2452: 353-360, 2022.
Article in English | MEDLINE | ID: covidwho-1844275

ABSTRACT

Neutralization assays are often used as part of research and diagnostics to detect neutralizing antibodies and to determine a possible protective antibody titer after infection or vaccination. Here we describe a conventional plaque reduction neutralization test (PRNT) to check the presence of antibodies against SARS-CoV-2 in patient samples (serum or plasma).


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Neutralization Tests , SARS-CoV-2
14.
Vaccines (Basel) ; 10(4)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1786096

ABSTRACT

The long-term effect of protection by two doses of SARS-CoV-2 vaccination in patients receiving chronic intermittent hemodialysis (CIHD) is an urging question. We investigated the humoral and cellular immune response of 42 CIHD patients who had received two doses of SARS-CoV-2 vaccine, and again after a booster vaccine with mRNA-1273 six months later. We measured antibody levels and SARS-CoV-2-specific surrogate neutralizing antibodies (SNA). Functional T cell immune response to vaccination was assessed by quantifying interferon-γ (IFN-γ) and IL-2 secreting T cells specific for SARS-CoV-2 using an ELISpot assay. Our data reveal a moderate immune response after the second dose of vaccination, with significantly decreasing SARS-CoV-2-specific antibody levels and less than half of the study group showed neutralizing antibodies six months afterwards. Booster vaccines increased the humoral response dramatically and led to a response rate of 89.2% for antibody levels and a response rate of 94.6% for SNA. Measurement in a no response/low response (NR/LR) subgroup of our cohort, which differed from the whole group in age and rate of immunosuppressive drugs, indicated failure of a corresponding T cell response after the booster vaccine. We strongly argue in favor of a regular testing of surrogate neutralizing antibodies and consecutive booster vaccinations for CIHD patients to provide a stronger and persistent immunity.

15.
Nephrol Dial Transplant ; 37(6): 1132-1139, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1662129

ABSTRACT

INTRODUCTION: The vital renal replacement therapy makes it impossible for dialysis patients to distance themselves socially. This results in a high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing coronavuris disease 2019, with excess mortality due to disease burden and immunosuppression. We determined the efficacy of a 100-µg booster of mRNA-1273 (Moderna, Cambridge, MA, USA) 6 months after two doses of BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, USA) in 194 SARS-CoV-2-naïve dialysis patients. METHODS: Anti-SARS-CoV-2 spike antibodies were measured with the Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics, Mannheim, Germany) 4 and 10-12 weeks after two doses of BNT162b2 as well as 4 weeks after the mRNA-1273 booster. The presence of neutralizing antibodies was measured by the SARS-CoV-2 Surrogate Virus Neutralization Test (GenScript Biotech, Piscataway, NJ, USA). Two different cut-offs for positivity were used, one according to the manufacturer's specifications and one correlating with positivity in a plaque reduction neutralization test (PRNT). Receiver operating characteristics analyses were performed to match the anti-SARS-CoV-2 spike antibody cut-offs with the cut-offs in the surrogate neutralization assay accordingly. RESULTS: Any level of immunoreactivity determined by the anti-SARS-CoV-2 spike antibody assay was found in 87.3% (n = 144/165) and 90.6% (n = 164/181) of patients 4 and 10-12 weeks, respectively, after two doses of BNT162b2. This was reduced to 68.5% or 60.6% 4 weeks and 51.7% or 35.4% 10-12 weeks, respectively, when using the ROC cut-offs for neutralizing antibodies in the surrogate neutralization test (manufacturer's cut-off ≥103 U/mL and cut-off correlating with PRNT ≥196 U/mL). Four weeks after the mRNA-1273 booster, the concentration of anti-SARS-CoV-2 spike antibodies increased to 23 119.9 U/mL and to 97.3% for both cut-offs of neutralizing antibodies. CONCLUSION: Two doses of BNT162b2 followed by one dose of mRNA-1273 within 6 months in patients receiving maintenance dialysis resulted in significant titres of SARS-CoV-2 spike antibodies. While two doses of mRNA vaccine achieved adequate humoral immunity in a minority, the third vaccination boosts the development of virus-neutralizing quantities of SARS-CoV-2 spike antibodies (against wild-type SARS-CoV-2) in almost all patients.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Renal Dialysis , Seroconversion , Vaccination , Vaccines, Synthetic , mRNA Vaccines
16.
PLoS One ; 17(1): e0262656, 2022.
Article in English | MEDLINE | ID: covidwho-1638777

ABSTRACT

SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Diagnostic Tests, Routine/methods , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Viral Load/methods , COVID-19/epidemiology , COVID-19/virology , Genes, Viral , Germany/epidemiology , Humans , Reproducibility of Results
17.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 65(1): 86-95, 2022 Jan.
Article in German | MEDLINE | ID: covidwho-1568341

ABSTRACT

Disinfection measures have become more important as a result of the COVID-19 pandemic in Germany. The increased need for disinfectants at the beginning of the pandemic required temporary legal regulations in order to provide a sufficient quantity of products for the necessary disinfection in the medical sector on the one hand and for the additional demand in the population on the other. For this purpose, the Federal Institute for Drugs and Medical Devices (BfArM) and the Federal Institute for Occupational Safety and Health (BAuA) issued a general ruling, which is explained in more detail in this article. The focus was on measures for hygienic hand disinfection. However, other applications such as surface disinfection in relation to pandemic respiratory diseases are also addressed. The experience gained in ensuring the supply of disinfectants that are effective and safe to use should be used to prepare for further pandemics.


Subject(s)
COVID-19 , Disinfectants , Disinfection , Germany , Humans , Pandemics/prevention & control , SARS-CoV-2
18.
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz ; : 1-10, 2021.
Article in German | EuropePMC | ID: covidwho-1564081

ABSTRACT

Durch die COVID-19-Pandemie haben Desinfektionsmaßnahmen auch in Deutschland an Bedeutung gewonnen. Der erhöhte Bedarf an Desinfektionsmitteln zu Beginn der Pandemie erforderte es, vorübergehende rechtliche Regelungen zu treffen, um einerseits ausreichend Mittel für die notwendige Desinfektion im medizinischen Bereich und andererseits für den zusätzlichen Bedarf in der Bevölkerung zur Verfügung zu haben. Dazu wurden vom Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) und der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) Allgemeinverfügungen erlassen, die in diesem Beitrag näher erläutert werden. Im Vordergrund stehen dabei die Maßnahmen für die hygienische Händedesinfektion. Aber auch weitere Anwendungen wie die Flächendesinfektion im Zusammenhang mit pandemischen Atemwegserkrankungen werden erörtert. Die Erfahrungen bei der Sicherstellung der Versorgung mit wirksamen und in der Anwendung sicheren Desinfektionsmitteln sollten für die Vorbereitung weiterer Pandemien genutzt werden.

19.
J Mol Med (Berl) ; 100(3): 463-470, 2022 03.
Article in English | MEDLINE | ID: covidwho-1473984

ABSTRACT

Multiple myeloma patients are often treated with immunomodulatory drugs, proteasome inhibitors, or monoclonal antibodies until disease progression. Continuous therapy in combination with the underlying disease frequently results in severe humoral and cellular immunodeficiency, which often manifests in recurrent infections. Here, we report on the clinical management and immunological data of three multiple-myeloma patients diagnosed with COVID-19. Despite severe hypogammaglobulinemia, deteriorated T cell counts, and neutropenia, the patients were able to combat COVID-19 by balanced response of innate immunity, strong CD8+ and CD4+ T cell activation and differentiation, development of specific T-cell memory subsets, and development of anti-SARS-CoV-2 type IgM and IgG antibodies with virus-neutralizing capacities. Even 12 months after re-introduction of lenalidomide maintenance therapy, antibody levels and virus-neutralizing antibody titers remained detectable, indicating persisting immunity against SARS-CoV-2. We conclude that in MM patients who tested positive for SARS-CoV-2 and were receiving active MM treatment, immune response assessment could be a useful tool to help guide decision-making regarding the continuation of anti-tumor therapy and supportive therapy. KEY MESSAGES: Immunosuppression due to multiple myeloma might not be the crucial factor that is affecting the course of COVID-19. In this case, despite pre-existing severe deficits in CD4+ T-cell counts and IgA und IgM deficiency, we noticed a robust humoral and cellular immune response against SARS-CoV-2. Evaluation of immune response and antibody titers in MM patients that were tested positive for SARS-CoV-2 and are on active MM treatment should be performed on a larger scale; the findings might affect further treatment recommendations for COVID-19, MM treatment re-introduction, and isolation measures.


Subject(s)
COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Multiple Myeloma/immunology , Multiple Myeloma/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Humans , Immunoglobulin G/immunology , Male , Middle Aged
20.
J Infect Dis ; 224(7): 1109-1114, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1470152

ABSTRACT

Whether monoclonal antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralize authentic SARS-CoV-2, including variant B.1.1.7 (alpha), but variants B.1.351 (beta) and P.2 (zeta) were resistant against bamlanivimab and partially resistant to casirivimab. Whether antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantshas been investigated using pseudoviruses. We show that authentic SARS-CoV-2 carrying E484K were resistant against bamlanivimab and less susceptible to casirivimab, convalescent and vaccine-elicited sera.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Mutation, Missense , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL